metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.229D10, (C4×D4)⋊19D5, (D4×C20)⋊21C2, (D5×C42)⋊5C2, C4⋊C4.285D10, D10⋊2Q8⋊48C2, (C4×Dic10)⋊33C2, D10.8(C4○D4), (C2×D4).218D10, C4.44(C4○D20), C20⋊2D4.15C2, C4.Dic10⋊46C2, C20.310(C4○D4), C20.17D4⋊32C2, (C4×C20).156C22, (C2×C10).101C24, (C2×C20).161C23, C22⋊C4.114D10, (C22×C4).212D10, D10.12D4⋊54C2, C4.137(D4⋊2D5), C23.98(C22×D5), (D4×C10).261C22, C23.D10⋊50C2, C23.21D10⋊8C2, C4⋊Dic5.300C22, C22.126(C23×D5), D10⋊C4.99C22, (C22×C10).171C23, (C22×C20).110C22, C5⋊4(C23.36C23), (C4×Dic5).335C22, (C2×Dic5).218C23, (C22×D5).184C23, C23.D5.106C22, (C2×Dic10).296C22, C10.D4.112C22, (C4×C5⋊D4)⋊5C2, C2.24(D5×C4○D4), C2.50(C2×C4○D20), C10.141(C2×C4○D4), C2.23(C2×D4⋊2D5), (C2×C4×D5).376C22, (C5×C4⋊C4).330C22, (C2×C4).161(C22×D5), (C2×C5⋊D4).123C22, (C5×C22⋊C4).125C22, SmallGroup(320,1229)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 718 in 234 conjugacy classes, 101 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×10], C22, C22 [×10], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×17], D4 [×6], Q8 [×2], C23 [×2], C23, D5 [×2], C10 [×3], C10 [×2], C42, C42 [×5], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×9], C22×C4 [×2], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, Dic5 [×7], C20 [×4], C20 [×3], D10 [×2], D10 [×2], C2×C10, C2×C10 [×6], C2×C42, C42⋊C2 [×2], C4×D4, C4×D4 [×2], C4×Q8, C4⋊D4, C22⋊Q8, C22.D4 [×2], C4.4D4, C42.C2, C42⋊2C2 [×2], Dic10 [×2], C4×D5 [×6], C2×Dic5 [×3], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×2], C22×D5, C22×C10 [×2], C23.36C23, C4×Dic5 [×3], C4×Dic5 [×2], C10.D4 [×4], C4⋊Dic5, C4⋊Dic5 [×4], D10⋊C4 [×2], C23.D5 [×6], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×C4×D5 [×3], C2×C5⋊D4 [×2], C22×C20 [×2], D4×C10, C4×Dic10, D5×C42, C23.D10 [×2], D10.12D4 [×2], C4.Dic10, D10⋊2Q8, C23.21D10 [×2], C4×C5⋊D4 [×2], C20.17D4, C20⋊2D4, D4×C20, C42.229D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×6], C24, D10 [×7], C2×C4○D4 [×3], C22×D5 [×7], C23.36C23, C4○D20 [×2], D4⋊2D5 [×2], C23×D5, C2×C4○D20, C2×D4⋊2D5, D5×C4○D4, C42.229D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=a-1b2, bc=cb, bd=db, dcd-1=a2c-1 >
(1 108 33 135)(2 114 34 81)(3 110 35 137)(4 116 36 83)(5 102 37 139)(6 118 38 85)(7 104 39 131)(8 120 40 87)(9 106 31 133)(10 112 32 89)(11 138 43 101)(12 84 44 117)(13 140 45 103)(14 86 46 119)(15 132 47 105)(16 88 48 111)(17 134 49 107)(18 90 50 113)(19 136 41 109)(20 82 42 115)(21 100 143 65)(22 58 144 79)(23 92 145 67)(24 60 146 71)(25 94 147 69)(26 52 148 73)(27 96 149 61)(28 54 150 75)(29 98 141 63)(30 56 142 77)(51 152 72 129)(53 154 74 121)(55 156 76 123)(57 158 78 125)(59 160 80 127)(62 122 97 155)(64 124 99 157)(66 126 91 159)(68 128 93 151)(70 130 95 153)
(1 70 18 52)(2 61 19 53)(3 62 20 54)(4 63 11 55)(5 64 12 56)(6 65 13 57)(7 66 14 58)(8 67 15 59)(9 68 16 60)(10 69 17 51)(21 140 158 118)(22 131 159 119)(23 132 160 120)(24 133 151 111)(25 134 152 112)(26 135 153 113)(27 136 154 114)(28 137 155 115)(29 138 156 116)(30 139 157 117)(31 93 48 71)(32 94 49 72)(33 95 50 73)(34 96 41 74)(35 97 42 75)(36 98 43 76)(37 99 44 77)(38 100 45 78)(39 91 46 79)(40 92 47 80)(81 149 109 121)(82 150 110 122)(83 141 101 123)(84 142 102 124)(85 143 103 125)(86 144 104 126)(87 145 105 127)(88 146 106 128)(89 147 107 129)(90 148 108 130)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 33 32)(2 31 34 9)(3 8 35 40)(4 39 36 7)(5 6 37 38)(11 46 43 14)(12 13 44 45)(15 42 47 20)(16 19 48 41)(17 50 49 18)(21 142 143 30)(22 29 144 141)(23 150 145 28)(24 27 146 149)(25 148 147 26)(51 73 72 52)(53 71 74 60)(54 59 75 80)(55 79 76 58)(56 57 77 78)(61 93 96 68)(62 67 97 92)(63 91 98 66)(64 65 99 100)(69 95 94 70)(81 111 114 88)(82 87 115 120)(83 119 116 86)(84 85 117 118)(89 113 112 90)(101 131 138 104)(102 103 139 140)(105 137 132 110)(106 109 133 136)(107 135 134 108)(121 151 154 128)(122 127 155 160)(123 159 156 126)(124 125 157 158)(129 153 152 130)
G:=sub<Sym(160)| (1,108,33,135)(2,114,34,81)(3,110,35,137)(4,116,36,83)(5,102,37,139)(6,118,38,85)(7,104,39,131)(8,120,40,87)(9,106,31,133)(10,112,32,89)(11,138,43,101)(12,84,44,117)(13,140,45,103)(14,86,46,119)(15,132,47,105)(16,88,48,111)(17,134,49,107)(18,90,50,113)(19,136,41,109)(20,82,42,115)(21,100,143,65)(22,58,144,79)(23,92,145,67)(24,60,146,71)(25,94,147,69)(26,52,148,73)(27,96,149,61)(28,54,150,75)(29,98,141,63)(30,56,142,77)(51,152,72,129)(53,154,74,121)(55,156,76,123)(57,158,78,125)(59,160,80,127)(62,122,97,155)(64,124,99,157)(66,126,91,159)(68,128,93,151)(70,130,95,153), (1,70,18,52)(2,61,19,53)(3,62,20,54)(4,63,11,55)(5,64,12,56)(6,65,13,57)(7,66,14,58)(8,67,15,59)(9,68,16,60)(10,69,17,51)(21,140,158,118)(22,131,159,119)(23,132,160,120)(24,133,151,111)(25,134,152,112)(26,135,153,113)(27,136,154,114)(28,137,155,115)(29,138,156,116)(30,139,157,117)(31,93,48,71)(32,94,49,72)(33,95,50,73)(34,96,41,74)(35,97,42,75)(36,98,43,76)(37,99,44,77)(38,100,45,78)(39,91,46,79)(40,92,47,80)(81,149,109,121)(82,150,110,122)(83,141,101,123)(84,142,102,124)(85,143,103,125)(86,144,104,126)(87,145,105,127)(88,146,106,128)(89,147,107,129)(90,148,108,130), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,33,32)(2,31,34,9)(3,8,35,40)(4,39,36,7)(5,6,37,38)(11,46,43,14)(12,13,44,45)(15,42,47,20)(16,19,48,41)(17,50,49,18)(21,142,143,30)(22,29,144,141)(23,150,145,28)(24,27,146,149)(25,148,147,26)(51,73,72,52)(53,71,74,60)(54,59,75,80)(55,79,76,58)(56,57,77,78)(61,93,96,68)(62,67,97,92)(63,91,98,66)(64,65,99,100)(69,95,94,70)(81,111,114,88)(82,87,115,120)(83,119,116,86)(84,85,117,118)(89,113,112,90)(101,131,138,104)(102,103,139,140)(105,137,132,110)(106,109,133,136)(107,135,134,108)(121,151,154,128)(122,127,155,160)(123,159,156,126)(124,125,157,158)(129,153,152,130)>;
G:=Group( (1,108,33,135)(2,114,34,81)(3,110,35,137)(4,116,36,83)(5,102,37,139)(6,118,38,85)(7,104,39,131)(8,120,40,87)(9,106,31,133)(10,112,32,89)(11,138,43,101)(12,84,44,117)(13,140,45,103)(14,86,46,119)(15,132,47,105)(16,88,48,111)(17,134,49,107)(18,90,50,113)(19,136,41,109)(20,82,42,115)(21,100,143,65)(22,58,144,79)(23,92,145,67)(24,60,146,71)(25,94,147,69)(26,52,148,73)(27,96,149,61)(28,54,150,75)(29,98,141,63)(30,56,142,77)(51,152,72,129)(53,154,74,121)(55,156,76,123)(57,158,78,125)(59,160,80,127)(62,122,97,155)(64,124,99,157)(66,126,91,159)(68,128,93,151)(70,130,95,153), (1,70,18,52)(2,61,19,53)(3,62,20,54)(4,63,11,55)(5,64,12,56)(6,65,13,57)(7,66,14,58)(8,67,15,59)(9,68,16,60)(10,69,17,51)(21,140,158,118)(22,131,159,119)(23,132,160,120)(24,133,151,111)(25,134,152,112)(26,135,153,113)(27,136,154,114)(28,137,155,115)(29,138,156,116)(30,139,157,117)(31,93,48,71)(32,94,49,72)(33,95,50,73)(34,96,41,74)(35,97,42,75)(36,98,43,76)(37,99,44,77)(38,100,45,78)(39,91,46,79)(40,92,47,80)(81,149,109,121)(82,150,110,122)(83,141,101,123)(84,142,102,124)(85,143,103,125)(86,144,104,126)(87,145,105,127)(88,146,106,128)(89,147,107,129)(90,148,108,130), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,33,32)(2,31,34,9)(3,8,35,40)(4,39,36,7)(5,6,37,38)(11,46,43,14)(12,13,44,45)(15,42,47,20)(16,19,48,41)(17,50,49,18)(21,142,143,30)(22,29,144,141)(23,150,145,28)(24,27,146,149)(25,148,147,26)(51,73,72,52)(53,71,74,60)(54,59,75,80)(55,79,76,58)(56,57,77,78)(61,93,96,68)(62,67,97,92)(63,91,98,66)(64,65,99,100)(69,95,94,70)(81,111,114,88)(82,87,115,120)(83,119,116,86)(84,85,117,118)(89,113,112,90)(101,131,138,104)(102,103,139,140)(105,137,132,110)(106,109,133,136)(107,135,134,108)(121,151,154,128)(122,127,155,160)(123,159,156,126)(124,125,157,158)(129,153,152,130) );
G=PermutationGroup([(1,108,33,135),(2,114,34,81),(3,110,35,137),(4,116,36,83),(5,102,37,139),(6,118,38,85),(7,104,39,131),(8,120,40,87),(9,106,31,133),(10,112,32,89),(11,138,43,101),(12,84,44,117),(13,140,45,103),(14,86,46,119),(15,132,47,105),(16,88,48,111),(17,134,49,107),(18,90,50,113),(19,136,41,109),(20,82,42,115),(21,100,143,65),(22,58,144,79),(23,92,145,67),(24,60,146,71),(25,94,147,69),(26,52,148,73),(27,96,149,61),(28,54,150,75),(29,98,141,63),(30,56,142,77),(51,152,72,129),(53,154,74,121),(55,156,76,123),(57,158,78,125),(59,160,80,127),(62,122,97,155),(64,124,99,157),(66,126,91,159),(68,128,93,151),(70,130,95,153)], [(1,70,18,52),(2,61,19,53),(3,62,20,54),(4,63,11,55),(5,64,12,56),(6,65,13,57),(7,66,14,58),(8,67,15,59),(9,68,16,60),(10,69,17,51),(21,140,158,118),(22,131,159,119),(23,132,160,120),(24,133,151,111),(25,134,152,112),(26,135,153,113),(27,136,154,114),(28,137,155,115),(29,138,156,116),(30,139,157,117),(31,93,48,71),(32,94,49,72),(33,95,50,73),(34,96,41,74),(35,97,42,75),(36,98,43,76),(37,99,44,77),(38,100,45,78),(39,91,46,79),(40,92,47,80),(81,149,109,121),(82,150,110,122),(83,141,101,123),(84,142,102,124),(85,143,103,125),(86,144,104,126),(87,145,105,127),(88,146,106,128),(89,147,107,129),(90,148,108,130)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,33,32),(2,31,34,9),(3,8,35,40),(4,39,36,7),(5,6,37,38),(11,46,43,14),(12,13,44,45),(15,42,47,20),(16,19,48,41),(17,50,49,18),(21,142,143,30),(22,29,144,141),(23,150,145,28),(24,27,146,149),(25,148,147,26),(51,73,72,52),(53,71,74,60),(54,59,75,80),(55,79,76,58),(56,57,77,78),(61,93,96,68),(62,67,97,92),(63,91,98,66),(64,65,99,100),(69,95,94,70),(81,111,114,88),(82,87,115,120),(83,119,116,86),(84,85,117,118),(89,113,112,90),(101,131,138,104),(102,103,139,140),(105,137,132,110),(106,109,133,136),(107,135,134,108),(121,151,154,128),(122,127,155,160),(123,159,156,126),(124,125,157,158),(129,153,152,130)])
Matrix representation ►G ⊆ GL4(𝔽41) generated by
| 32 | 40 | 0 | 0 |
| 0 | 9 | 0 | 0 |
| 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 9 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 9 |
| 40 | 0 | 0 | 0 |
| 18 | 1 | 0 | 0 |
| 0 | 0 | 17 | 3 |
| 0 | 0 | 38 | 38 |
| 40 | 9 | 0 | 0 |
| 18 | 1 | 0 | 0 |
| 0 | 0 | 17 | 1 |
| 0 | 0 | 38 | 24 |
G:=sub<GL(4,GF(41))| [32,0,0,0,40,9,0,0,0,0,9,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[40,18,0,0,0,1,0,0,0,0,17,38,0,0,3,38],[40,18,0,0,9,1,0,0,0,0,17,38,0,0,1,24] >;
68 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | ··· | 4P | 4Q | 4R | 4S | 4T | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
68 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | D10 | C4○D20 | D4⋊2D5 | D5×C4○D4 |
| kernel | C42.229D10 | C4×Dic10 | D5×C42 | C23.D10 | D10.12D4 | C4.Dic10 | D10⋊2Q8 | C23.21D10 | C4×C5⋊D4 | C20.17D4 | C20⋊2D4 | D4×C20 | C4×D4 | C20 | D10 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C4 | C4 | C2 |
| # reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 8 | 4 | 2 | 4 | 2 | 4 | 2 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{229}D_{10} % in TeX
G:=Group("C4^2.229D10"); // GroupNames label
G:=SmallGroup(320,1229);
// by ID
G=gap.SmallGroup(320,1229);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,1123,794,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations